APPROVED

By CO HONG TRAN at 8:14 pm, Jun 24, 2006

Application Demonstration

THE AVERAGE APPROXIMATING METHOD ON FUNCTIONAL ADJUSTMENT QUANTITY FOR SOLVING

The Volterra Integral Equation II

(corrected for solving integral equations with Hereditary kernels)

by Co.H Tran, University of Natural Sciences, HCMC Vietnam -

Institute of Applied Mechanics , HCMC - coth123@math.com & coth123@yahoo.com

Copyright 2004 Sat, November 06 2004

** Abstract: Solving the Volterra's integral equation II with applying the Neumann series and the average approximating method on functional adjustment quantity.

** Subjects: Viscoelasticity Mechanics, The Integral equation.

Copyright

Co.H Tran --

. The Average Approximating Method on Functional Adjustment Quantity (Sokolov's method) All rights reserved. No copying or transmitting of this material is allowed without the prior written permission of Co.H Tran

The Average Approximating Method on Functional Adjustment Quantity (Sokolov's method)

In consideration of The Volterra Integral Equation II (second kind), we find the explicit expression for the resolvent kernel $\Gamma(t,t)$ in the general form:

$$v \ = (\ 1 + \quad \lambda K^* \) \ u$$

here λ : arbitrary parameter . The solution of u can be represented with the Neumann series : .

The resolvent operator Γ^* is determined by a Neumann series : , then the kernel

The convergence of this series must be investigated in a connection with the Neumann series .

The average approximating method on the functional adjustment quantity (Sokolov's method) makes increasing for the rate of convergence of this series .

From the first approximation of the solution u , we find the adjustment quantity for the next and so on .

We consider the following equation:

(1)

then be written as:

the first approximation: (2) by choosing the initial adjustment quantity: (3) From (2) and (3) we obtain: (4) with (5) the n-th approximation: (6) and the adjustment quantity of the n-th order can

(7) here (8) . From (6), (7) and (8) we have: (9) Denoting the formulas (6) to (9) can be carried out by the computer programming language. We can show that the convergence condition of this method is (10) here: the project-operator from the Banach's space B into its space Bo (the solution u B)

Sokolov's method

As seen, the first approximation : $uI(t) = v(t) + \lambda \alpha_1 \int_a^b K(t, \tau) d\tau$ We

$$T_1(x) := u_1(x)$$

The adjustment quantity of the order i-th can be expresssed:

$$\alpha_{i+1} := \frac{\lambda \int_{a}^{b} K(T_i(y) - T_{i-1}(y) - \alpha_i) \, dy \, (b-a)}{D}$$

The coefficient

$$\alpha_{i+2} := \min \left(\alpha_i, \frac{\lambda \int_a^b K(T_i(y) - T_{i-1}(y) - \alpha_i) \, dy \, (b-a)}{D} \right)$$

Compare with the initial function and we have the error estimated:

$$saiso_i := \sqrt{\frac{\int_a^b |u_{i+1}(x) - u_i(x)|^2 dx}{b - a}}$$

```
> restart; interface(warnlevel=0):
> xapxi:=proc(f,lambda,a,b,n,K)
> local s,smax,smin,saiso,i,D,T,eq1,alpha,eq,alpha1,iv,dv;
eq1:=u(x)=f+lambda*int(K*u(y), y=a..b);;printf("\n%s","
THE
VOLTERRA INTEGRAL EQUATION II ( second kind )
:",eq1,"********************************
***************************);u[1](x):=f+alpha1*lambda*int(K,
y=a..b);alpha:=int(u[1](x),
x=a..b);eq:=alpha1=alpha;printf("\n%s"," RECURRING TASKS
NUMBER ");print("1&/.THE EQUATION OF 1st ADJUSTMENT
QUANTITY : ", eq);alpha1:=Re(solve(eq,alpha1));print(" THE
1st ADJUSTMENT QUANTITY :
alpha[1]=",evalf(alpha1,3));alpha[1]:=alpha1;u[1](x):=f+alp
ha[1]*lambda*int(K, y=a..b);print(" FUNCTION
u[1](x)=",u[1](x));;
> T[0](x):=0:
> T[1](x):=x->u[1](x);D:=b-a-lambda*int(int(K, y=a..b),
x=a..b);
for i from 1 to n do
u[0](x):=0:T[0](y):=0:T[1](x):=u[1](x);T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](y):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x):=subs(x=y,T[i](x)
i](x));T[i-1](y):=subs(x=y,T[i-1](x));;printf("\n%s","
");print(" COMPARE WITH THE INITIAL FUNCTION",u[i-
1],"(x)=",T[i-1](x));;printf("\n%s"," ");print(" ------
                     -----");printf("\n%s"," RECURRING LOOP No
");printf("\n%s"," "); ;print(i+1,"&/. ADJUSTMENT QUANTITY
OF :",i+1," order WE OBTAIN :
");;alpha[i+1]:=(lambda/D)*int(int(K*(T[i](y)-T[i-1](y)-
alpha[i]), y=a..b), x=a..b);
```

```
alpha[i+1]:=evalf(alpha[i+1],5);;alpha[i+2]:=min(alpha[i+1]
,alpha[i]);;alpha[i+2]:= evalf(alpha[i+2],5);
T[i+1](x):=f+lambda*int(K*(T[i](y)+alpha[i+1]),
y=a..b);u[i+1](x):=T[i+1](x);;print("FUNCTION)
",u[i+1],"(x)=",T[i+1](x));print(" ALPHA
COEFFICIENT",[i+1],"="
,evalf(alpha[i+1],5));;;;saiso[i]:=sqrt((1/(b-
a))*int((abs(u[i+1](x)-u[i](x))^2), x=a..b));;;;print("
ERROR OF : ",u[i+1],"(x)"," AND ",u[i],"(x)"," IS
:");print( " ERROR ESTIMATED = ",evalf(saiso[i],5));
> od:printf("\n%s"," ");printf("\n%s"," "); print("-----
-----CONCLUSION-----
----- ");;printf("\n%s"," ");print( "THE ESTIMATED ERRORS
OF "); for i from 1 to n do print( " order ",[i], " IS
:", evalf(saiso[i],5));od:;printf("\n%s","
");printf("\n%s"," ");
> end:
              u^{k}(x) n is a Cauchy sequence in L2(T) as k -> \infty.
It is easy to see that
It follows from the completeness of L2(T) that it converges in the L2 sense to a
sum g in L2(T). That is, we have
\lim \| u^{k}(x) - u^{(k-1)}(x) \| = 0 \quad k \to \infty
> dothi:=proc(k,m,n,h)
> local y,ym,yn;
with(plottools):with(plots):y:=u[k](x);ym:=u[m](x);yn:=u[n]
(x);print("GRAPHIC:", u[k],"(x) = ",u[k](x)," RED
");;print("GRAPHIC :", u[m],"(x) = ",u[m](x)," YELLOW
");;print("GRAPHIC :", u[n],"(x) = ",u[n](x)," BLUE ");
:plot([y(x),ym,yn],x=-
h..h,color=[red,yellow,blue],thickness=[3,9,15],title='APPR
OXIMATEDGRAPHICS');
> end:
> xapxi(-20.2*sqrt(x), 3, 0, 1, 10, sqrt(x)*(y+10)
```

"********************

"1&/.THE EQUATION OF 1st ADJUSTMENT QUANTITY; &1 $=-13.46666667 + 21. \alpha I$

" THE 1st ADJUSTMENT QUANTITY: alpha[1,]\text{\theta}.'673

" FUNCTION u[1](x)=,"
$$1.01000000 \sqrt{x}$$

"COMPARE WITH THE INITIAL FUNCTION" u_0 , "(x)=", 0

**

RECURRING LOOP No

2, "&/. ADJUSTMENT QUANTITY OF;"2, " order WE OBTAIN: "

" FUNCTION ",
$$u_2$$
, "(x)=", 0.99990105 \sqrt{x}

"ALPHA COEFFICIENT,"[2], "=", -0.0067333

" ERROR OF: ", u₂, "(x)", " AND ", u₁, "(x)", " IS:"

" ERROR ESTIMATED = '0.0071410

" COMPARE WITH THE INITIAL FUNCTION," u_1 , "(x)=", 1.01000000 \sqrt{x}

RECURRING LOOP No

3, "&/. ADJUSTMENT QUANTITY OF;"3, " order WE OBTAIN: "

" FUNCTION ", u_3 , "(x)=", 1.00000098 \sqrt{x}

" ALPHA COEFFICIENT,"[3], "=", 0.000066626

" ERROR OF: ", u₃, "(x)", " AND ", u₂, "(x)", " IS:"

" ERROR ESTIMATED =, '0.000070661

" COMPARE WITH THE INITIAL FUNCTION" u_2 , "(x)=", 0.99990105 \sqrt{x}

"
RECURRING LOOP No
4, "&/. ADJUSTMENT QUANTITY OF;"4, " order WE OBTAIN: "
" FUNCTION ", u_4 , "(x)=", 0.99999999 \sqrt{x}
" ALPHA COEFFICIENT", [4], "=", $-6.5990 \ 10^{-7}$
" ERROR OF : ," u_4 , "(x)," " AND ", u_3 , "(x)," " IS :"
" ERROR ESTIMATED =,"7.0004 10 ⁻⁷
"COMPARE WITH THE INITIAL FUNCTION," u_3 , "(x)=", 1.00000098 \sqrt{x}
"
п
RECURRING LOOP No
5, "&/. ADJUSTMENT QUANTITY OF;'5, " order WE OBTAIN: "
" FUNCTION ", u_5 , "(x)=", 1.00000000 \sqrt{x}

" ALPHA COEFFICIENT," [5], "=", 6.7050 10⁻⁹

" ERROR OF: ", u₅, "(x)", " AND ", u₄, "(x)", " IS:"

" ERROR ESTIMATED = ",7.0711 10⁻⁹

"COMPARE WITH THE INITIAL FUNCTION" u_4 , "(x)=", 0.99999999 \sqrt{x}

RECURRING LOOP No

6, "&/. ADJUSTMENT QUANTITY OF; '6, " order WE OBTAIN: "

" FUNCTION ",
$$u_6$$
, "(x)=", 1.00000000 \sqrt{x}

" ALPHA COEFFICIENT," [6], "=", $-2.6417 \cdot 10^{-11}$

" ERROR OF : ," u_6 , "(x)", " AND ", u_5 , "(x)", " IS :"

"ERROR ESTIMATED =, '0.

"COMPARE WITH THE INITIAL FUNCTION" u_5 , "(x)=", 1.00000000 \sqrt{x}

RECURRING LOOP No
7, "&/. ADJUSTMENT QUANTITY OF;"7, " order WE OBTAIN: "
" FUNCTION ", u_7 , "(x)=", 1.000000000 \sqrt{x}
" ALPHA COEFFICIENT," [7], "=", $-2.7738 \ 10^{-11}$
"ERROR OF: ", u_7 , "(x)", "AND ", u_6 , "(x)", "IS:"
"ERROR ESTIMATED =, '0.
"COMPARE WITH THE INITIAL FUNCTION" u_6 , "(x)=", 1.000000000 \sqrt{x}
"
" "
RECURRING LOOP No
8, "&/. ADJUSTMENT QUANTITY OF; '8, " order WE OBTAIN: "
" FUNCTION ", u_8 , "(x)=", 1.000000000 \sqrt{x}

" ALPHA COEFFICIENT," [8], "=", $-2.9125 \ 10^{-11}$ " ERROR OF: ," u_8 , "(x)," " AND ", u_7 , "(x)," " IS:"
" ERROR ESTIMATED =, 0.

" COMPARE WITH THE INITIAL FUNCTION u_7 , "(x)=", 1.00000000 \sqrt{x}

RECURRING LOOP No

9, "&/. ADJUSTMENT QUANTITY OF; '9, " order WE OBTAIN: "

" FUNCTION ",
$$u_9$$
, "(x)=", 1.000000000 \sqrt{x}

" ALPHA COEFFICIENT," [9], "=", $-3.0581 \ 10^{-11}$

" ERROR OF: ", u_9 , "(x)", " AND ", u_8 , "(x)", " IS:"

"ERROR ESTIMATED = 0.

"COMPARE WITH THE INITIAL FUNCTION" u_8 , "(x)=", 1.00000000 \sqrt{x}

RECURRING LOOP No
10, "&/. ADJUSTMENT QUANTITY OF;"10, " order WE OBTAIN: "
" FUNCTION ", u_{10} , "(x)=", 1.000000000 \sqrt{x}
" ALPHA COEFFICIENT," [10], "=", $-3.2110 \ 10^{-11}$
" ERROR OF : ," u_{10} , "(x)", " AND ", u_{9} , "(x)", " IS :"
"ERROR ESTIMATED =, \(\text{0} \).
"COMPARE WITH THE INITIAL FUNCTION" u_9 , "(x)=", 1.00000000 \sqrt{x}
"
RECURRING LOOP No
11, "&/. ADJUSTMENT QUANTITY OF;"11, " order WE OBTAIN: "
" FUNCTION ", u_{11} , "(x)=", 1.000000000 \sqrt{x}

" ALPHA COEFFICIENT," [11], "=", $-3.3716\ 10^{-11}$ " ERROR OF: ," u_{11} , "(x)", " AND ", u_{10} , "(x)", " IS: " " ERROR ESTIMATED = 0.

"------"
-----"
-----"

**

THE ESTIMATED ERRORS OF '

" order ", [1], " IS : ", 0.0071410

" order ", [2], " IS : ", 0.000070661

" order ", [3], " IS :", 7.0004 10⁻⁷

" order ", [4], " IS :", 7.0711 10⁻⁹

" order ", [5], " IS : ", 0.

" order ", [6], " IS : ", 0.

" order ", [7], " IS : ", 0.

" order ", [8], " IS : ", 0.

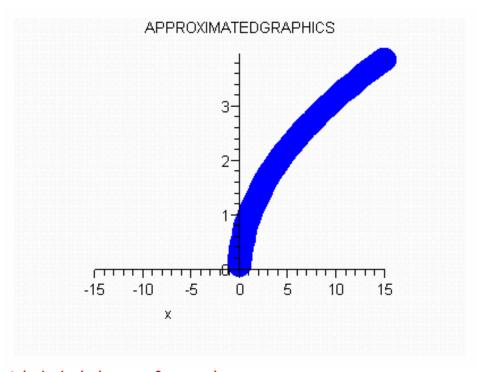
" order ", [9], " IS : ", 0.

" order ", [10], " IS : ", 0.

"GRAPHIC :,"
$$u_2$$
, "(x) = ", 0.99990105 \sqrt{x} , "RED "

"GRAPHIC :,"
$$u_1$$
, "(x) = ", 1.01000000 \sqrt{x} , "YELLOW "

"GRAPHIC :",
$$u_8$$
, "(x) = ", 1.00000000 \sqrt{x} , "BLIJE"



> 1+Int(x*y*u(y),y = 0 .. x);

$$1 + \int_0^x x \, y \, u(y) \, \mathrm{d}y$$

 $> K:=1/18*x^7*y+1/18*x*y^7-1/9*x^4*y^4;$

$$\frac{1}{18}x^7y + \frac{1}{18}xy^7 - \frac{1}{9}x^4y^4$$

> xapxi(1 , 1 , 0 , 1 , 15 , K);

THE VOLTERRA INTEGRAL EQUATION II (
second kind): "
$$u(x) = 1 +$$

$$\int_{0}^{1} \left(\frac{1}{18}x^{7}y + \frac{1}{18}xy^{7} - \frac{1}{9}x^{4}y^{4}\right)u(y) dy$$

RECURRING TASKS NUMBER

"1&/.THE EQUATION OF 1st ADJUSTMENT QUANTITY; αI =1 + $\frac{1}{400} \alpha I$

" THE 1st ADJUSTMENT QUANTITY: alpha[1,]±!00

"FUNCTION u[1](x)=,"1 +
$$\frac{100}{3591}x^7 + \frac{25}{3591}x - \frac{80}{3591}x^4$$

" COMPARE WITH THE INITIAL FUNCTION," u_0 , "(x)=", 0

' ------' -----'' 2, "&/. ADJUSTMENT QUANTITY OF;"2, " order WE OBTAIN: "

" FUNCTION ",
$$u_2$$
, "(x)=", 1

- $+ 0.006987451495 x 0.02233406016 x^4$
- $+ 0.02787245210 x^7$

" ALPHA COEFFICIENT,"[2], "=", 0.0000047046

" ERROR OF : ," u_2 , "(x)", " AND ", u_1 , "(x)", " IS :"

" ERROR ESTIMATED = '0.0000062884

" COMPARE WITH THE INITIAL FUNCTION," u_1 , "(x)=", 1

$$+\frac{100}{3591}x^7 + \frac{25}{3591}x - \frac{80}{3591}x^4$$

RECURRING LOOP No

3, "&/. ADJUSTMENT QUANTITY OF;"3, " order WE OBTAIN: "

" FUNCTION ",
$$u_3$$
, "(x)=", 1

- $+ 0.006987409702 x 0.02233396848 x^4$
- $+ 0.02787243020 x^7$

" ALPHA COEFFICIENT," [3], "=", $-5.2971 \cdot 10^{-9}$

"ERROR OF: ", u_3 , "(x)", "AND ", u_2 , "(x)", "IS:" "ERROR ESTIMATED =,"1.1818 10^{-8}

"COMPARE WITH THE INITIAL FUNCTION" u_2 , "(x)=", 1

 $+ 0.006987451495 x - 0.02233406016 x^4$

 $+ 0.02787245210 x^7$

RECURRING LOOP No

4, "&/. ADJUSTMENT QUANTITY OF;"4, " order WE OBTAIN: "

" FUNCTION ", *u*₄, "(x)=", 1

 $+ 0.006987409824 x - 0.02233396875 x^4$

 $+ 0.02787243029 x^7$

" ALPHA COEFFICIENT," [4], "=", 1.7406 10⁻¹¹

" ERROR OF : ," u_4 , "(x)", " AND ", u_3 , "(x)", " IS :"

" ERROR ESTIMATED =," $3.1801 \cdot 10^{-11}$

"COMPARE WITH THE INITIAL FUNCTION" u_3 , "(x)=", 1

 $+ 0.006987409702 x - 0.02233396848 x^4$

 $+ 0.02787243020 x^7$

'
RECURRING LOOP No
5, "&/. ADJUSTMENT QUANTITY OF;"5, " order WE OBTAIN: "
" FUNCTION ", <i>u</i> ₅ , "(x)=", 1
$+ 0.006987409824 x - 0.02233396875 x^4 + 0.02787243029 x^7$
" ALPHA COEFFICIENT," [5], "=", $-3.7900 \ 10^{-14}$
" ERROR OF : ", u_5 , "(x)", " AND ", u_4 , "(x)", " IS :"
"ERROR ESTIMATED =, 0.
"COMPARE WITH THE INITIAL FUNCTION" u_4 , "(x)=", 1 + 0.006987409824 x - 0.02233396875 x^4 + 0.02787243029 x^7
""

```
OBTAIN: "
     " FUNCTION ", u_6, "(x)=", 1
         + 0.006987409824 x - 0.02233396875 x^4
         + 0.02787243029 x^7
             " ALPHA COEFFICIENT," [6], "=", 9.4987 10<sup>-17</sup>
             " ERROR OF: ", u<sub>6</sub>, "(x)", " AND ", u<sub>5</sub>, "(x)", " IS:"
                       "ERROR ESTIMATED = 0.
     "COMPARE WITH THE INITIAL FUNCTION,"u_5, "(x)=", 1
         +0.006987409824 x - 0.02233396875 x^4
         + 0.02787243029 x^7
RECURRING LOOP No
     7, "&/. ADJUSTMENT QUANTITY OF;"7, " order WE
           OBTAIN: "
     " FUNCTION ", u<sub>7</sub>, "(x)=", 1
         +0.006987409824 x - 0.02233396875 x^4
         + 0.02787243029 x^7
            " ALPHA COEFFICIENT," [7], "=", -2.3806\ 10^{-19}
```

6, "&/. ADJUSTMENT QUANTITY OF; '6, " order WE

" ERROR OF: ", u_7 , "(x)", " AND ", u_6 , "(x)", " IS:" " ERROR ESTIMATED = 0.

"COMPARE WITH THE INITIAL FUNCTION" u_6 , "(x)=", 1

- $+ 0.006987409824 x 0.02233396875 x^4$
- $+ 0.02787243029 x^7$

RECURRING LOOP No

8, "&/. ADJUSTMENT QUANTITY OF;'8, " order WE OBTAIN : "

" FUNCTION ", u_8 , "(x)=", 1

- $+ 0.006987409824 x 0.02233396875 x^4$
- $+ 0.02787243029 x^7$

" ALPHA COEFFICIENT," [8], "=", 5.9664 10⁻²²

" ERROR OF : ", u_8 , "(x)", " AND ", u_7 , "(x)", " IS :"

" ERROR ESTIMATED =, 0.

" COMPARE WITH THE INITIAL FUNCTION" u_7 , "(x)=", 1

- $+\ 0.006987409824\ x 0.02233396875\ x^4$
- $+ 0.02787243029 x^7$

"	
	-11
RECURRING LOOP No	
9, "&/. ADJUSTMENT QUANTITY OF; '9, " order WE OBTAIN: "	
" FUNCTION ", u_9 , "(x)=", 1	
$+ 0.006987409824 x - 0.02233396875 x^4 + 0.02787243029 x^7$	
" ALPHA COEFFICIENT," [9], "=", -1.4953 10 ⁻²⁴	
"ERROR OF: ", u_9 , "(x)", "AND ", u_8 , "(x)", "IS:"	
"ERROR ESTIMATED =, 0.	
"COMPARE WITH THE INITIAL FUNCTION" u_8 , "(x)=", 1 + 0.006987409824 x - 0.02233396875 x^4 + 0.02787243029 x^7	
"	
	- *1

```
OBTAIN: "
     " FUNCTION ", u_{10}, "(x)=", 1
        + 0.006987409824 x - 0.02233396875 x^4
        + 0.02787243029 x^7
            " ALPHA COEFFICIENT," [10], "=", 3.7476 10<sup>-27</sup>
            " ERROR OF: ", u_{10}, "(x)", " AND ", u_{9}, "(x)", " IS:"
                      "ERROR ESTIMATED = 0.
     "COMPARE WITH THE INITIAL FUNCTION"u_0, "(x)=", 1
        +0.006987409824 x - 0.02233396875 x^4
        + 0.02787243029 x^7
RECURRING LOOP No
     11, "&/. ADJUSTMENT QUANTITY OF;"11, " order WE
           OBTAIN: "
     " FUNCTION ", u_{11}, "(x)=", 1
        +0.006987409824 x - 0.02233396875 x^4
        + 0.02787243029 x^7
           " ALPHA COEFFICIENT," [11], "=", -9.3925 \ 10^{-30}
```

10, "&/. ADJUSTMENT QUANTITY OF;"10, " order WE

" ERROR OF : ," u_{11} , "(x)", " AND ", u_{10} , "(x)", " IS :" " ERROR ESTIMATED = 0.

"COMPARE WITH THE INITIAL FUNCTION," u_{10} , "(x)=", 1

- $+ 0.006987409824 x 0.02233396875 x^4$
- $+ 0.02787243029 x^7$

RECURRING LOOP No

12, "&/. ADJUSTMENT QUANTITY OF;"12, " order WE OBTAIN: "

" FUNCTION ", u_{12} , "(x)=", 1

- $+ 0.006987409824 x 0.02233396875 x^4$
- $+ 0.02787243029 x^7$

" ALPHA COEFFICIENT," [12], "=", 2.3540 10⁻³²

" ERROR OF : ", u₁₂, "(x)", " AND ", u₁₁, "(x)", " IS :"

" ERROR ESTIMATED =, 0.

" COMPARE WITH THE INITIAL FUNCTION," u_{11} , "(x)=", 1

- $+\ 0.006987409824\ x 0.02233396875\ x^4$
- $+ 0.02787243029 x^7$

-	\ "
JRRI:	NG LOOP NO
13	, "&/. ADJUSTMENT QUANTITY OF ;"13, " order WE OBTAIN : "
"]	FUNCTION ", u_{13} , "(x)=", 1
	$+\ 0.006987409824\ x - 0.02233396875\ x^4$
	$+ 0.02787243029 x^7$
	" ALPHA COEFFICIENT," [13], "=", $-5.8997 \cdot 10^{-35}$
	" ERROR OF : ," u_{13} , "(x)", " AND ", u_{12} , "(x)", " IS :"
	"ERROR ESTIMATED =, 0.
" (COMPARE WITH THE INITIAL FUNCTION u_{12} , $v(x)=0$, 1
	$+\ 0.006987409824 x - 0.02233396875 x^4$
	$+ 0.02787243029 x^7$
_	

```
OBTAIN: "
     " FUNCTION ", u_{14}, "(x)=", 1
         + 0.006987409824 x - 0.02233396875 x^4
         + 0.02787243029 x^7
             " ALPHA COEFFICIENT," [14], "=", 1.4786 10<sup>-37</sup>
            " ERROR OF: ", u<sub>14</sub>, "(x)", " AND ", u<sub>13</sub>, "(x)", " IS:"
                       "ERROR ESTIMATED = 0.
     "COMPARE WITH THE INITIAL FUNCTION,"u_{13}, "(x)=", 1
         + 0.006987409824 x - 0.02233396875 x^4
         + 0.02787243029 x^7
RECURRING LOOP No
     15, "&/. ADJUSTMENT QUANTITY OF;"15, " order WE
           OBTAIN: "
     " FUNCTION ", u_{15}, "(x)=", 1
         +0.006987409824 x - 0.02233396875 x^4
         + 0.02787243029 x^7
            " ALPHA COEFFICIENT," [15], "=", -3.7058 \times 10^{-40}
```

14, "&/. ADJUSTMENT QUANTITY OF;"14, " order WE

" ERROR OF : ," u_{15} , "(x)", " AND ", u_{14} , "(x)", " IS :" " ERROR ESTIMATED = 0.

" COMPARE WITH THE INITIAL FUNCTION," u_{14} , "(x)=", 1

- $+ 0.006987409824 x 0.02233396875 x^4$
- $+ 0.02787243029 x^7$

RECURRING LOOP No

16, "&/. ADJUSTMENT QUANTITY OF;"16, " order WE OBTAIN: "

" FUNCTION ", *u*₁₆, "(x)=", 1

- $+ 0.006987409824 x 0.02233396875 x^4$
- $+ 0.02787243029 x^7$

" ALPHA COEFFICIENT," [16], "=", 9.2877 10⁻⁴³

" ERROR OF : ", u₁₆, "(x)", " AND ", u₁₅, "(x)", " IS :"

" ERROR ESTIMATED =, 0.

"		CONCLUSION	
	"		
		CONCLUSION	*1

**

THE ESTIMATED ERRORS OF '

" order ", [1], " IS : ", 0.0000062884

" order ", [2], " IS :", 1.1818 10⁻⁸

" order ", [3], " IS :", 3.1801 10⁻¹¹

" order ", [4], " IS : ", 0.

" order ", [5], " IS : ", 0.

" order ", [6], " IS : ", 0.

" order ", [7], " IS : ", 0.

" order ", [8], " IS : ", 0.

" order ", [9], " IS : ", 0.

" order ", [10], " IS : ", 0.

" order ", [11], " IS : ", 0.

" order ", [12], " IS : ", 0.

" order ", [13], " IS : ", 0.

" order ", [14], " IS : ", 0.

```
> dothi(2,8,13,50);

"GRAPHIC:,"u_2, "(x) = ", 1

+ 0.006987451495 x - 0.02233406016 x^4

+ 0.02787245210 x^7, " RED "

"GRAPHIC:,"u_8, "(x) = ", 1

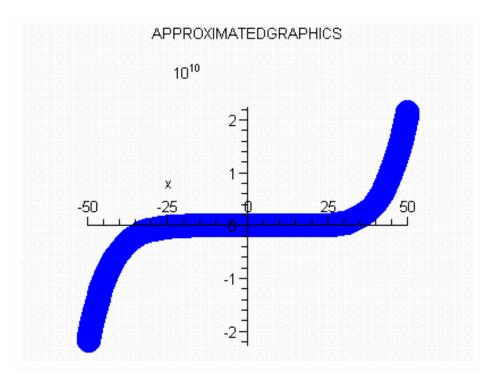
+ 0.006987409824 x - 0.02233396875 x^4

+ 0.02787243029 x^7, " YELLOW "

"GRAPHIC:,"u_{13}, "(x) = ", 1

+ 0.006987409824 x - 0.02233396875 x^4

+ 0.02787243029 x^7, " BLUE "
```



Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.